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Abstract—We propose a hybrid formal verification approach
that combines high-level deductive reasoning and circuit-based
reasoning and apply it to highly optimized cryptographic
assembly code. Our approach permits scaling up formal verifi-
cation in two complementary directions: 1) it reduces the proof
effort required for low-level functions where the computation
logics are obfuscated by the intricate use of architecture-
specific instructions and 2) it permits amortizing the effort
of proving one implementation by using equivalence checking
to propagate the guarantees to other implementations of the
same computation using different optimizations or targeting
different architectures. We demonstrate our approach via an
extension to the EasyCrypt proof assistant and by revisiting
formally verified implementations of ML-KEM in Jasmin. As
a result, we obtain the first formally verified implementation
of ML-KEM that offers performance comparable to the fastest
non-verified implementation in x86-64 architectures.

1. Introduction

The deployment of cryptographic implementations re-
quires extremely efficient architecture-specific code. As a
consequence, cryptographic libraries typically rely on highly
optimized assembly implementations, making platform-
specific use of data layout, control flow and ISA extensions.
In fact, for a given low-level function, multiple imple-
mentations must often coexist. Developing and maintaining
this code is a difficult and error-prone process. It requires
deep domain-specific expertise, not only on the functionality
being implemented and the target architecture, but also on
implementation-level techniques to mitigate the risks of tim-

ing and other microarchitectural attacks. For these reasons,
cryptography libraries increasingly turn to high-assurance
methods to prove that these implementations are correct.

One popular approach to prove the correctness optimized
implementations is to show their equivalence with reference
implementations. This approach has been applied success-
fully in the cryptographic context, with automated tools such
as Axe [1] and CryptoLec [2]. Unfortunately, automated
equivalence checking of highly optimized implementations
of complex algorithms such as those occurring in post-
quantum cryptography remains computationally intractable.

An alternative approach is to use deductive program
verification, either with standalone tools, or via embeddings
into proof assistants. This approach is used extensively in
the context of high-assurance cryptography [3], and blends
well with complementary verification tasks required for
cryptographic constructions, namely security proofs. How-
ever, the manual effort of deductive program verification
for optimized cryptographic implementations is enormous
and, for this reason, this approach does not scale to permit
covering the many hand-optimized assembly routines that
occur in real-world cryptography libraries.

Approach. We present a program verification framework
that supports fine-grained interactions between equivalence
checking and deductive program verification. The main
high-level idea of our approach is to introduce a hybrid rep-
resentation of programs, where selected program fragments
can be written as circuits. Critically, our representation of
circuits is architecture-independent, so that sophisticated
data layouts, such as words of non-standard size, have a
direct translation into our hybrid representation. An addi-



tional benefit of the circuit representation of programs is that
it allows exhibiting the parallel structure of computations.
This makes it possible to reason efficiently about maps,
permutations, and other simple parallel computation patterns
that are often (conceptually) present in highly optimized
data-wrangling functions. The other high-level idea of our
approach is that the conversion from programs to circuits is
driven by and freely interleaved with deductive verification.
This makes it possible to apply equivalence checking both
compositionally and iteratively. In particular, our approach
allows users to decompose programs into a hybrid form
where circuit-based reasoning permits simplifying some
components and recover a logical structure that is hidden by
architectural aspects. The simplified program can then be,
again, analysed deductively or using circuit-based reasoning.

A main application of our approach are data-wrangling
functions of the kind discussed above. While these functions
perform conceptually simple computations, they represent
a significant burden for verification, for two reasons: (1)
they are particularly challenging to prove, due to aggressive
architecture-specific optimizations; (2) the cost of their veri-
fication by purely deductive methods is not amortized across
different architectures. In contrast, our approach makes ver-
ification of these functions nearly automated, and allows
to reuse most of the proofs across architectures. Moreover,
the resulting proofs are robust to small modifications of
implementations that are introduced over time to further
improve performance. This massively reduces the effort for
proof maintenance through the whole lifecycle of high-
assurance cryptographic software.

We implement our approach in the EasyCrypt proof as-
sistant [4], [5]. For concreteness, we focus on cryptographic
implementations written in the Jasmin language [6], [7].
We evaluate our approach on optimized Jasmin implementa-
tions of the lattice-based key-encapsulation mechanism ML-
KEM, which is based on Kyber [8], [9], and which has
recently been standardized by NIST as FIPS 203 [10]. One
of our main examples is the implementation of a rejection
sampling routine in ML-KEM, which is optimized using
AVX2 vector instructions. Verifying the correctness of this
optimized routine was left as an open challenge by prior
works [11], [12]. We also demonstrate applicability to a
critical component in an optimized Jasmin implementation
of the SHA-3 standard [13].

Summary of contributions. We propose an approach to
the formal verification of low-level cryptographic code that
combines deductive verification and circuit-based reasoning.
Our approach is conceptually simple and builds on the
theoretical foundations that underly EasyCrypt, leveraging
the ability to decompose complex functional-correctness
proof goals expressed as (relational) Hoare judgements into
simpler goals that can be soundly restated as equivalences
between circuits. Crucially, by carefully selecting the com-
ponents that are interpreted as circuits, often after applying
simple high-level transformations that greatly simplify them,
we can perform equivalence checking in a scalable way.

Our main contributions are as follows:

• We extend EasyCrypt with a new backend that permits
circuit-based reasoning and new features that allow sim-
plifying programs and converting them into circuit form.

• We create a general framework for connecting the ax-
iomatic semantics for languages formalized in EasyCrypt
to the circuit-based reasoning backend. Our instantiation
supports programs in Jasmin for x86-64 (including AVX2
vector extensions) and ARMv7-M architectures.

• We demonstrate the advantages of our approach by pre-
senting a new formally verified implementation of ML-
KEM that offers a performance that is comparable to that
of the fastest non-verified implementations available in
x86-64 plaforms supporting AVX2. The hybrid reasoning
now available in EasyCrypt was instrumental to formally
verify the optimized rejection sampling that prior works
left as an open challenge.

• Additionally, we demonstrate proof-engineering advan-
tages of our method, by focusing on a compression routine
also present in ML-KEM implementations, which requires
working with non-standard word sizes (10-bit words). We
show that several versions of this routine, for x86-64 and
ARM architectures can be proved correct with a fraction
of the effort that was reported for the original deductive
verification proof in EasyCrypt [11], [12]. Moreover, one
can easily amortize proof effort by transferring functional
correctness results from one implementation to another.

• Finally, to illustrate the usage of our techniques in the
symmetric cryptography setting, we report our results
on verifying the AVX2 implementation of the Keccak
permutation used in the SHA-3 standard.

Our development is publicly available via the EasyCrypt
repository,1 and the examples from the Formosa Crypto
organization.2

Paper structure. In the next section we introduce our
motivating example. In Section 3 we provide some back-
ground on Jasmin, EasyCrypt and the formal verification
methodology that combines these tools. In Sections 4 and 5
we describe how our methodology works in EasyCrypt,
first explaining how circuit-based reasoning can be used to
discharge (relational) Hoare triples, and then discussing how
hybrid reasoning scales better than deductive and circuit-
based reasoning independently. In Section 6 we describe
engineering effort invested in this new version of EasyCrypt,
and in Section 7 we describe the use cases that support our
results.

2. The Challenge: AVX2 Rejection Sampling

As motivating example we will use the Jasmin function
presented in Figure 1. This function sits at the core of the op-

1. https://github.com/EasyCrypt/easycrypt
2. https://github.com/formosa-crypto/

https://github.com/EasyCrypt/easycrypt
https://github.com/formosa-crypto/


1 inline fn __gen_matrix_buf_rejection_filter48
2 ( reg mut ptr u16[MLKEM_N] pol, reg u64 counter, reg const ptr u8[BUF_size] buf, reg u64

buf_offset, reg u256 load_shuffle, reg u256 mask, reg u256 bounds, reg ptr u8[2048] sst,
reg u256 ones) → reg ptr u16[MLKEM_N], reg u64 {

3 reg u256 f0 f1 g0 g1, shuffle_0 shuffle_1 shuffle_t;
4 reg u128 shuffle_0_1 shuffle_1_1;
5 reg u64 good t0_0 t0_1 t1_0 t1_1;
6 f0 = #VPERMQ(buf.[u256 (int) buf_offset + 0 ], (4u2)[2,1,1,0]);
7 f1 = #VPERMQ(buf.[u256 (int) buf_offset + 24], (4u2)[2,1,1,0]);
8 f0 = #VPSHUFB_256(f0, load_shuffle); f1 = #VPSHUFB_256(f1, load_shuffle);
9 g0 = #VPSRL_16u16(f0, 4); g1 = #VPSRL_16u16(f1, 4);

10 f0 = #VPBLEND_16u16(f0, g0, 0xAA); f1 = #VPBLEND_16u16(f1, g1, 0xAA);
11 f0 = #VPAND_256(f0, mask); f1 = #VPAND_256(f1, mask);
12 g0 = #VPCMPGT_16u16(bounds, f0); g1 = #VPCMPGT_16u16(bounds, f1);
13 g0 = #VPACKSS_16u16(g0, g1); good = #VPMOVMSKB_u256u64(g0);
14 t0_0 = good; t0_0 &= 0xFF;
15 shuffle_0 = (256u) #VMOV(sst[u64 (int)t0_0]);
16 ?{}, t0_0 = #POPCNT_64(t0_0); t0_0 += counter;
17 t0_1 = good; t0_1 >>= 16; t0_1 &= 0xFF;
18 shuffle_0_1 = #VMOV(sst[u64 (int)t0_1]);
19 ?{}, t0_1 = #POPCNT_64(t0_1); t0_1 += t0_0;
20 t1_0 = good; t1_0 >>= 8; t1_0 &= 0xFF;
21 shuffle_1 = (256u) #VMOV(sst[u64 (int)t1_0]);
22 ?{}, t1_0 = #POPCNT_64(t1_0); t1_0 += t0_1;
23 t1_1 = good; t1_1 >>= 24; t1_1 &= 0xFF;
24 shuffle_1_1 = #VMOV(sst[u64 (int)t1_1]);
25 ?{}, t1_1 = #POPCNT_64(t1_1); t1_1 += t1_0;
26 shuffle_0 = #VINSERTI128(shuffle_0, shuffle_0_1, 1);
27 shuffle_1 = #VINSERTI128(shuffle_1, shuffle_1_1, 1);
28 shuffle_t = #VPADD_32u8(shuffle_0, ones);
29 shuffle_0 = #VPUNPCKL_32u8(shuffle_0, shuffle_t);
30 shuffle_t = #VPADD_32u8(shuffle_1, ones);
31 shuffle_1 = #VPUNPCKL_32u8(shuffle_1, shuffle_t);
32 f0 = #VPSHUFB_256(f0, shuffle_0); f1 = #VPSHUFB_256(f1, shuffle_1);
33 pol.[u128 2*counter] = (128u)f0; pol.[u128 2*t0_0] = #VEXTRACTI128(f0, 1);
34 pol.[u128 2*t0_1] = (128u)f1; pol.[u128 2*t1_0] = #VEXTRACTI128(f1, 1);
35 counter = t1_1;
36 return pol, counter;
37 }

Load 64 bytes from 56 positions

Arrange as 2 groups of
16x12-bit values (each
stored as u256=16u16)

Compute 32 bound-checks

For each group of 8 check bits, count number of
accepted words and use them to define offsets for storage.
For each group of 8 check bits, define a permutation
pattern for storage of 0 to 8 accepted words.

Prepare permutation descriptors

Permute and store

Figure 1. Core rejection sampling routine.

timized implementations of ML-KEM3 and it provides non-
trivial performance gains in a computationally expensive
step in the construction: the generation of a random-looking
matrix in Rk×k

q . Here, k is a small integer in {2, 3, 4} and Rq

denotes the polynomial ring Zq[X]/(X256+1) for q = 3329.
The goal of the function is to convert a sequence of

48 bytes coming from the output of an eXtendable Output
Function (XOF), in this case SHAKE128, into 32 candidates
for polynomial coefficients represented as 16-bit words in
the range [0, 212), and then copying those that fall in the
range [0, q) to an output buffer. This AVX2-specific opti-
mization was first proposed by Gueron and Schlieker [14]
for optimizing the lattice-based KEM NewHope [15]. It was
then adapted by the Kyber team in the submission to the
NIST PQC competition [9], which eventually gave rise to
the ML-KEM standard [10].

Due to its impact on performance, which we demonstrate
in Section 7, this routine and adaptations to other SIMD-
enabled architectures will be deployed in widely used soft-
ware implementations. However, as we believe will become

3. Our formally verified implementation of ML-KEM is proved correct
wrt the same abstract specification that was proved secure in [12], and
therefore retains the security guarantees that are discussed for the im-
plementations in that work. In terms of implementation correctness, and
because the differences to the original Kyber specification in [11] are very
small, the results could be easily extended to cover Kyber as well.

apparent in this section, guaranteeing that such implemen-
tations are correct is far from trivial.

What the code is doing. The high-level, intuitive, specifica-
tion of the computation carried out by this function is given
by the following EasyCrypt expression, where bs2int denotes
converting a bit string to integers, chunk 12 breaks down a
long bit string into chunks of size 12, and the remaining
operators perform standard list and array operations.

op filter48(buf : W8.t Array536.t, pol : W16.t Array256.t,
counter : int, buf ofset : int) =

let buf unused = take 48 (drop buf offset (to list buf))
in let candidates = map bs2int (chunk 12 (Bytes2Bits bufunused))
in let good = filter (fun x⇒ x < q) candidates
in let ngood = size good
in let pol = Array256.init (fun i⇒ if count ≤ i ∧ i < count + ngood

then good[i − ngood]
else pol[i])

in (pol, count + ngood)

There are two data inputs: 1) buf is an array of 536 bytes,
containing fresh (pseudo-)randomness starting at position
buf offset and 2) pol is a polynomial, represented as an
array of 16-bit words of size 256, which has already been
partially filled with count coefficients. The function processes



bh5 bl5 bh4 bl4 bh3 bl3 bh2 bl2 bh1 bl1 bh0 bl0

bh5 bl5 bh4 bl4 bh4 bl4 bh3 bl3 bh2 bl2 bh1 bl1 bh1 bl1 bh0 bl0

0 bh5 bl5 bh4 0 bh4 bl4 bh3 0 bh2 bl2 bh1 0 bh1 bl1 bh0

0 bh5 bl5 bh4 bh4 bl4 bh3 bl3 0 bh2 bl2 bh1 bh1 bl1 bh0 bl0

0 bh5 bl5 bh4 0 bl4 bh3 bl3 0 bh2 bl2 bh1 0 bl1 bh0 bl0

line 10

line 11

line 12
line 12

line 13

Figure 2. Rearranging 6 bytes read from memory as four 12-bit words. This pattern occurs 4 times across each of the 256-bit registers f0 and f1, so that
in the end there are sixteen 12-bit words in each of them.

48 randomness bytes, so the caller must ensure that:4 i.
buf offset + 48 + 8 ≤ 536; and ii. 48 ∗ 8/12 = 32 can
be potentially stored in pol i.e. counter + 32 ≤ 256. Then
the function takes the next 48 bytes, which it chunks into
12-bit integers (32 of them) and stores the ones that are in
the range [0..q) in the next available positions in pol.

The Jasmin code uses AVX2 intrinsics heavily. We added
comments to highlight the following computation steps:

1) Lines 6-7: Data is read from memory. Two loads are
performed into two 256-bit registers f0 and f1. Each 32-
byte load, seen as four 64-bit words ABCD actually
already permutes the input into ABBC ignoring the
last 8 bytes. This justifies the overlap in the two loads.

2) Lines 8-11: The 24 bytes loaded into f0 and f1 are
expanded into sixteen 12-bit numbers. This process is
depicted in Figure 2: after a permutation that realigns
the 4-bit subwords, auxilliary variables g0 and g1 are
used to store right-shifted versions of f0 and f1. This
means that half of the required 12-bit values are now
in g0 and g1, whereas the remaining ones are in f0
and f1 but they need a masking step. The process is
concluded by blending pairwise g0 and f0 (resp. g1 and
f1) and masking the results to ensure that the 4 most
significant bits are 0.

3) Lines 12-13: All 12-bit values are then checked to be
within the [0, q) bound, resulting in 32-boolean bound-
check results. This ends the first part of the function,
where the parallel computation is carried out using
two 256-bit tracks, each handling 16 candidate values.
From here onwards, the computation is carried out in
four tracks, each taking care of 8 candidate values, as
follows.

4. The extra 8-byte slack in the admissible range of buf offset comes
from the fact that the function actually reads 24 + 32 = 56 bytes from
buf, as can be seen in lines 7 and 8 of the listing.

4) Lines 14-25: For each track, the 8 candidate values
need to be permuted, placing the good values on the
left, while preserving their order. Since there are 8
bound-check bits for these candidates, this means that
there are 256 possible reorderings that may occur.
The next step in the computation looks at the bound-
check bits, recovers from a table in memory (sst) the
permutation pattern that will rearrange them correctly,
and computes how many valid candidates were found.
The function computes four permutation patterns, one
for each track, but note that the values are still stored in
256-bit registers. So, logically, each 256-bit register is
seen as a pair 128-bit words, each storing eight 16-bit
values.

5) Lines 26-31: To conclude the computation, the code
then transforms the permutation patterns into sub-word
indexing information: variables shuffle 0 and shuffle 1
are filled with the byte-level index pattern that permutes
the bytes in f0 and f1 in the required way. At the low
level, first the indices of the least significant bytes of
each 16-bit word are stored in shuffle 0 and shuffle 1,
and then these are used to compute the indices of the
most significant bytes incrementing by one. The two
sets of indices are then merged into the final values of
shuffle 0 and shuffle 1.

6) Lines 32-34: Finally, the candidates in f0 and f1 are
permuted, creating four sets of values that need to
be copied into the output polynomial. The function
concludes by making these copies in order, so that the
rejected candidates from earlier tracks are overwritten
by accepted candidates in subsequent tracks.

Proving functional correctness. A formal proof that the
function in Figure 1 correctly implements the high-level
specification poses significant challenges:
1) The logical structure of the computation done by the



48 x 8 bits

map : 8-bits 7→ 16-bits

32 x 16 bits

16 x 16 bits 16 x 16 bits

map : 16-bits 7→ 1-bit map : 16-bits 7→ 1-bit

16 bits 16 bits

8 bits 8 x 16 bits 8 bits 8 x 16 bits 8 bits 8 x 16 bits 8 bits 8 x 16 bits

256
cases

256
cases

256
cases

256
cases

constant
propagation

constant
propagation

constant
propagation

constant
propagation

permutepermutepermutepermutepermutepermutepermutepermute

permutepermutepermutepermutepermutepermutepermutepermute

permutepermutepermutepermutepermutepermutepermutepermute

permutepermutepermutepermutepermutepermutepermutepermute

1st count x 16 bits 2nd count x 16 bits 3rd count x 16 bits 4th count x 16 bits

global count x 16 bits

Figure 3. Hybrid representation of rejection sampling routine. White rectangles represent data. Grey curved rectangles represent circuits. Arrows represent
high-level reasoning in the EasyCrypt Hoare logics.

specification is not discernable in the control-flow of the
code, which in fact is straight-line;

2) There is no uniform vectorized computation pattern, as
the implementation uses SIMD operations for various
word sizes;

3) The code heavily uses permutation operations, and some
of the used permutations are selected dynamically by
computations that depend on the input data;

4) The code performs load/store operations at overlapping
positions in input and output arrays; for the store oper-
ations, these positions are input-dependent.

As explained in the introduction, we overcome these
challenges by carrying out the proof over a hybrid repre-
sentation of the program, where we can recover the logical
structure of the computation and, once that is done, apply
automatic methods to resolving some of the low-level proof
goals. Figure 3 shows schematically the hybrid reasoning
that allows us to complete the proof.

We use Hoare logic to decompose the computation into
smaller steps, that are carefully chosen to enable automatic
proofs using circuit-based reasoning. We note that this high-
level part to the proof is interactive: one needs to under-
stand the program and break it down manually into pieces
that can then be plugged into the circuit analysis backend.
The manual interactive part then needs only to focus on
the semantically interesting part of the proof—structuring
the proof so as to reflect the top-to-bottom sequence of
operations depicted in Figure 3—whereas the conversion to
circuits and associated decision process that we describe
next is fully automatic.

The greyed curved rectangles represent the parts of
the program that are interpreted as circuits in the proof.
As the program progresses, circuits are carrying out par-
allel or permutation computations across lanes of varying

bit sizes: first 48x8 bits, then 48x16 bits, then 2x16x16
bits, then 4x(8+8x16) bits and finally 16-bit aligned results
again. Some simple computations are handled directly in
the EasyCrypt logics. However, the bulk of the proof is
delegated to equivalence checking over circuits. The topmost
circuit in Figure 3 corresponds to the computation performed
in lines 8-11 of Figure 1. The two circuits in the midle
correspond to lines 12-13. Finally, at the bottom, one can see
256x4 circuits that correspond to the possible permutations
occurring in lines 24-32. Indeed, these permutation circuits
become tractable only after a case analysis and constant
propagation across four parallel lanes, which are broken
down deductively. In Sections 5 and 7 we give more details
about this proof. Before that, in what follows, we describe
the framework that allows us to formalize it.

3. Background on EasyCrypt and Jasmin

EasyCrypt. EasyCrypt [4] is a proof assistant specialized
to proving the correctness and security of of cryptographic
constructions and their implementations. These objects can
be specified in EasyCrypt using an imperative language
called pWhile, which can be extended with arbitrary types
and operators. The semantics of such extensions can be
axiomatized, or they can be specified operationally using
a functional language.

EasyCrypt supports interactive formal reasoning in var-
ious logics. In this work we are interested in the following
two logics that permit reasoning about imperative programs:
• HL is a deterministic Hoare logic that allows to prove

results on deterministic programs. Statements in this logic
are of the form hoare [ M.foo : P ⇛ Q], where M.foo is a
procedure in module M, P is a precondition and Q is a
post condition.



• RHL is a relational Hoare logic, that allows to prove
relational results about the lock-step execution of a pair
of programs. Statements in this logic are of the form
equiv [ M.foo ∼ N.foo : rP ⇛ rQ], where rP and rQ are now
relational pre- and post- conditions that can refer to the
initial and final states of both procedures.

In particular, for the classes of programs we consider
in this paper, RHL can be used in conjunction with HL to
prove results by transitivity: using a correctness result about
a procedure P1 in HL and an equivalence result between
procedures P1 and P2 in RHL, one can prove a correctness
result about P2.

Additionally, we will rely on the ambient logic of Easy-
Crypt, which permits reasoning in high-order logic about
properties of abstract and concrete types and operators,
as well as manipulating results that describe properties of
programs established using HL and RHL.

Proofs in EasyCrypt are written as a sequence of tactics,
applying rules of the various logics. Additionally, some
tactics permit applying an automatic decision procedure to
decide a goal, e.g., by delegating it to an external SMT
solver. The extension to EasyCrypt that we introduce in
this paper enriches the set of tactics, introducing new ones
that permit accessing a back-end for automated circuit-based
reasoning.

Jasmin. Jasmin [6], [7] is a programming language and a
set of accompanying tools designed to allow the efficient
implementation and the formal verification of cryptographic
primitives. It empowers programmers with precise control
over low-level features of the assembly code produced
by the Jasmin compiler, such as instruction selection and
register spilling. Yet, the language provides high-level ab-
stractions such as functions and arrays that help structuring
programs and proofs. For instance, arrays have a functional
semantics and functions are call-by-value, vastly simplifying
modular reasoning. In accordance with the high-efficiency
objective, most abstractions are eliminated at compile-time;
the compiler checks that arrays are used linearly, which
in turn allows to modify them in-place and avoid run-time
copies.

Correctness of Jasmin Programs. The Jasmin compiler
is certified by a Coq proof of correctness that guarantees
the preservation of semantics from the Jasmin source to the
target assembly code. This means that, whatever is proved
about the functional behavior of the source Jasmin program,
is propagated by the compiler to the generated assembly.
A caveat to the above statement is that the correctness
guarantee applies only if the source program is safe, a
property that can be established using an automatic tool, also
shipped with the Jasmin compiler (but not certified). Other
properties of a source Jasmin program, such as the correct
deployment of constant-time and speculative constant-time
countermeasures, are also preserved by the compiler, and
they can be proved at the source level using automatic type-
based analysis tools also available with the compiler.

abstract theory BV.
type bv.
op size : int. axiom gt0 size : 0 < size.
op tolist : bv→ bool list. op oflist : bool list→ bv.
op touint : bv→ int. op tosint : bv→ int. op ofint : int→ bv.
op get (b: bv) (n: int) : bool = List.nth false (tolist b) n.
op msb (b: bv) : bool = List.nth false (tolist b) (size − 1).
axiom size tolist (bv : bv): List.size (tolist bv) = size.
axiom tolistP (bv : bv) : oflist (tolist bv) = bv.
axiom oflistP (xs : bool list) : size xs = size⇒

tolist (oflist xs) = xs.
axiom touintP (bv : bv) : touint bv = bs2int (tolist bv).
axiom tosintP (bv : bv) :
(size = 1) ∨ let v = bs2int (tolist bv) in

if (msb bv)
then tosint bv = v − 2ˆsize
else tosint bv = v.

axiom ofintP (i : int) : ofint i = oflist (int2bs size i).
end BV.

abstract theory BVAdd.
clone import BV.
op bvadd : bv→ bv→ bv.
axiom bvaddP (bv1 bv2 : bv) :
touint (bvadd bv1 bv2) = (touint bv1 + touint bv2) % 2ˆBV.size.

end BVAdd.

Figure 4. Snippet of new QFBVA theory.

The functional correctness of Jasmin programs is proved
by creating a model of the program in EasyCrypt: the Jasmin
compiler can generate such a model automatically (this
process is called extraction) as an imperative program that
is syntactically very close to the original Jasmin code. The
EasyCrypt model of the Jasmin program performs compu-
tations by using a set of operators that represent machine
instructions; these operators are specified in an EasyCrypt
library that is provided with the Jasmin compiler. The ex-
traction to EasyCrypt and the correctness of the EasyCrypt
library that captures the semantics of Jasmin operators are
trusted: the assumption is that for any safe Jasmin program,
whatever is proved in EasyCrypt about the extracted model
applies to the Jasmin source. In what follows, when we
refer to proving functional correctness properties of Jasmin
programs, we refer to proofs carried out over the extracted
EasyCrypt model.

4. Circuit-Based Reasoning in EasyCrypt

In this section we present the new features of EasyCrypt
from the perspective of the user, and explain when and
why user intervention is required to access circuit-based
reasoning in a sound way. We will use examples related to
the Jasmin programming language, but the same approach
can be used for other programming languages.

4.1. Introducing Fixed-Sized Bit Vectors (BV)

As a unifying logical anchor for circuit-based proof
goals we added to the EasyCrypt library a theory of bitvec-
tors and bitvector arrays, as defined in SMT-LIB.5 Figure 4

5. https://smt-lib.org/

https://smt-lib.org/


op xor left (w1 : W8.t) = (w1 +ˆ (W8.of int 42)) +ˆ (W8.of int 213).

op xor right (w1 : W8.t) = w1 +ˆ ((W8.of int 42)) +ˆ (W8.of int 213).

module M = {
proc xor left proc (w1: W8.t) = {
w1← w1 +ˆ (W8.of int 42);
w1← w1 +ˆ (W8.of int 213);
return w1;
}

proc xor right proc (w1: W8.t) = {
var w2 : W8.t;
w2← (W8.of int 42);
w2← w2 +ˆ (W8.of int 213);
w1←w1 +ˆ w2;
return w1;
}
}.

Figure 5. A toy example. Operator +ˆ denotes XOR over bytes (W8.t).

shows a snippet of the library code. This theory, called
QFBVA, is not a contribution in itself, as it is a straightfor-
ward handwritten restatement of relevant parts of the SMT-
LIB theories in EasyCrypt, with some extensions to allow
interfacing the circuit-based reasoning backend. However, it
does serve multiple useful purposes. Firstly, it creates a new
set of EasyCrypt logics that can be directly translated to bit-
vector operations natively supported by tools such as Z3 or
Boolector. Secondly, it expresses the semantics of these bit-
vector operations in the EasyCrypt core logics. This means
that proof goals expressed using other EasyCrypt libraries,
such as the Jasmin axiomatic semantics in EasyCrypt, can
be restated in terms of SMT-LIB bit-vector theories. Both
of these features were previously unavailable in EasyCrypt.
Thirdly, and crucially for this work, it serves as an entry
point that allows users to configure the tool with infor-
mation about which data types and operations can appear
in proof goals dischargeable using circuit-based analysis.
Indeed, circuits are seen internally as EasyCrypt operators
of type bvm 7→ bvn for arbitrary positive m and n. Here we
take advantage also of the fact that bvk types can be used
interchangeably with Boolean lists of fixed size k, which
follows from the bijection given by tolist and oflist. In what
follows we will show how this connection can be made
formal for arbitrary EasyCrypt types.

4.2. Basic circuit building blocks

Circuits that represent complex EasyCrypt expressions
and whole (loop-free) programs are built modularly from
an extendable set of basic circuits that we will call gadgets.
The EasyCrypt circuit-based backend is bootstrapped with
a core set of gadgets that covers the operations in QFBVA
for bit vectors of arbitrary size, plus some useful modular
buiding blocks such as sub-word and sub-array multiplexers,
sub-word permutations, etc. Circuits are built by composing
these basic building blocks, connecting output wires from
one gate to input wires in the next gate in the obvious way.

The composition machinery is generic with respect to word
sizes, but relatively straightforward.

However, the QFBVA library is limited and does not
capture all processor instructions, namely SIMD-style op-
erations. For this reason, we provide an alternative means
to add a new gadget to the EasyCrypt library and hardwire
it (for the moment without any proof) as the circuit-based
semantics of an EasyCrypt operator. To this end, we cre-
ated a simple domain-specific language to externalize the
specification of processor instructions. This is a functional
language, where bit vectors of fixed size are native types,
and where basic arithmetic operations and mechanisms for
constructing and deconstructing bit vectors are polymorphic.
There is also native support for map operations over sub-
vectors, enabling very compact descriptions of vectorized
instructions. We give two examples of the semantics of two
x86-64 AVX2 instructions specified in this simple language.
Variables can be annotated with their bit-vector sizes, nota-
tion w[@64|i] refers to the i-th 64-bit subword in w, whereas
add smul are native arithmetic operations.
VPERMQ(w@256, i@8)→@256 =
let permute (i@2) = w[@64|i] in
concat〈64〉(permute(i[@2|0]),permute(i[@2|1]),

permute(i[@2|2]),permute(i[@2|3]))

VPMADDWD 16u16(w1@256, w2@256)→@256 =
map〈32,8〉(fun x@32 y@32 .
add〈32〉(

smul〈16〉(x[@16|0], y[@16|0]),
smul〈16〉(x[@16|1], y[@16|1])), w1, w2)

EasyCrypt is able to parse and typecheck specifications
of instructions in this language and, if they are accepted, to
automatically generate circuits for them which are added to
the list of available gadgets. We have used this mechanism to
specify reusable gadgets for many x86-64 AVX2 instructions
and ARM-m4 instructions that are required for our use
cases. These are available in the EasyCrypt distribution. We
heuristically validated these gadgets by fuzzing them with
respect to baremetal instructions.

4.3. From models of Jasmin programs to circuits

Our goal is to enable the translation of a small but very
useful class of Jasmin programs into a circuit representation.
Intuitively, this class corresponds to loop-free programs
whose input and output can be seen as Boolean lists of
fixed length, and for which every computational step can be
represented by one of the gadgets known to EasyCrypt.

To allow the user to access the circuit-based analysis
backend, we have therefore introduced new EasyCrypt di-
rectives that allow the user to dynamically construct a set
of bindings that tells the tool how arbitrary EasyCrypt types
and operators can be mapped to bit vectors and circuit
gadgets, respectively. We will explain these below, referring
to the toy example in Figure 5.

Binding types. A binding for a type is always done via the
QFBVA theory. We give an example for the type of Jasmin
bytes W8.t.



bind bitstring W8.w2bits W8.bits2w
W8.to uint W8.to sint W8.of int W8.t 8.

This directive informs EasyCrypt that the user claims
and is willing to prove that the W8.t type is a sound in-
stantiation of bit vectors of size 8. To this end, the user
provides instantiations for all the operators required to make
the abstract BV theory from Figure 4 concrete, i.e., size = 8,
bv = W8.t, tolist = W8.w2bits, oflist = W8.bits2w, touint = W8.to uint,
tosint = W8.to sint and ofint = W8.of int. The user is then asked
to prove that these instantiations satisfy the properties (stated
as axiom in the abstract theory, but discharged as lemmas
upon instantiation) that are required to hold. We note that
such properties imply that there is a bijection from values
in the type to Boolean lists of length 8, and that the
intepretation of values in the type as integers is also well
defined. The latter is important for soundly binding QFBVA
operators.

Using this mechanism we can introduce bindings for any
bit-vector type and array thereof. In particular, we can easily
map Jasmin arrays of words to bit vectors as follows.

bind array Array2.” [ ]” Array2.” [ ← ]”
Array2.to list Array2.of list Array2.t 2.

In this case, the user needs to provide the usual get/set
operators, plus a conversion to and from lists of the content
type. Standard properties associated with array theories need
to be justified by the user, such as extensional equality
and get/set interaction. We note that such bindings are
polymorphic in the content type, so they only need to be
done once per array size.

Binding operators. We provide two directives that allow
binding an EasyCrypt operator to a gadget, depending on
whether the circuit-based semantics is established via the
QFBVA gadgets, or via the domain-specific circuit specifi-
cation language. For both, the binding will only work if the
operator is of type A 7→ B, where both types A and B are
already bound to bit-vector types.

When the semantics of an operator is isomorphic to one
of the already available QFBVA operators for the bound
types, the user can proceed as follows.

bind op W8.t W8.(+ˆ) ”xor”.

This EasyCrypt directive binds the XOR operator over W8.t,
written +ˆ, to the native xor circuit over bit vectors of
size 8 via the QFBVA semantics. Indeed, to successfully
complete the binding, the user is asked to prove that the
semantics of +ˆ coincides with that specified in QFBVA. We
note that this type of binding allows circuit-based reasoning
over the W8.t type and, simultaneously, it allows a direct
mapping of proof goals over W8.t to an external SMT tool
that supports QFBVA. We also note that, conceptually, this
binding does not introduce any additional assumptions wrt
to the gadget library: the operation over W8 is simply reusing
the assumption that the pre-existing gadget for XOR over
bit-vector types is correct.

For more complex instructions that do not have a direct
mapping to QFBVA operations, we allow the user to define
a binding as follows.
bind circuit VPMADDWD 256 ”VPMADDWD 16u16”.

This binding informs EasyCrypt that it has the user’s bless-
ing to replace every occurrence of operator VPMADDWD 256
with the corresponding gadget generated from the specifica-
tion of VPMADDWD 16u16. In this case, the binding directive
is indeed introducing a new assumption in the proof: that
the semantics of the EasyCrypt operator that represents the
VPMADDWD 256 instruction matches the semantics of the
circuit named VPMADDWD 16u16.

To further clarify the difference between bind op and
bind circuit, consider the xor left operator in Figure 5. One
can obtain a circuit for it via the binding of the +ˆ operator
over W8.t to the corresponding QFBVA circuit, and then re-
lying on the EasyCrypt machinery to construct the circuit for
the composed expression based on the pre-existing bit-vector
XOR gadget. This would not introduce new assumptions.

Alternatively, one could specify a circuit using our
domain-specific language as
XOR LEFT8(w@8)→@8 = xor〈8〉(xor〈8〉(w, 42@8), 213@8)

Binding this new gadget directly to xor left using
bind circuit would correspond to introducing a new axiom in
the proof. In our current development we use bind circuit to
enrich the set of gadgets with support for SIMD operations
in an agile way. In future work we plan to automatically syn-
thethise EasyCrypt operators from the specification language
description, and then ask the user to prove that the semantics
match. I.e., rather than introducing a new assumption, we
will ask the user to prove it as a lemma.

We defer to Section 6 a more detailed explanation of how
a full circuit for a complex EasyCrypt expression or program
is generated. We conclude this section by describing the set
of EasyCrypt proof goals that a user can delegate to circuit-
based analysis.

4.4. Automated proofs of EasyCrypt judgements

The binding mechanism we described above gives rise
to a hybrid representation of a program, and enables a fully
automated method for proving a class of EasyCrypt proof
goals that can be restated as the extensional equality of
two circuits over fixed-sized bit vectors, possibly over a re-
stricted set of inputs. In other words, this automatic method
works by restating EasyCrypt judgements as equivalences
between circuits.

Operator equivalence. The simplest EasyCrypt judgement
one can discharge in this way is an ambient logic formula
stating equivalence between two operators f1, f2 : A 7→ B
of the form:

∀x, P (x) ⇒ f1(x) = f2(x) (1)

where P is a Boolean function that constrains the set of
inputs over which the equivalence must hold.



The soundness of using circuit-based equivalence check-
ing to discharge this class of goals follows trivially from the
fact that the circuit reasoning backend of EasyCrypt and the
binding framework we described above are designed (and
trusted) to construct, for i ∈ {1, 2}, circuits Ci such that

∀x, (tolist ◦ Ci ◦ oflist)(x) = fi(x)

where tolist and oflist are the bijection proved on binding.
For example, one can prove the following equivalence

between operators xor left and xor right in Figure 5
∀ (w: W8.t) : xor left w = xor right w

by using the tactic bdep solve, which recognizes the goal,
converts both sides of the equality to a circuit, and proves
equivalence.

Program correctness. The extension to programs is
straightforward. Consider a loop-free deterministic Easy-
Crypt program S that uses only types and operators that
have been bound to the circuit backend. Consider also a
proof goal of the form

∀x, {arg = x ∧ P (x)}S {res = f1(x)} (2)

i.e., a Hoare triple where the pre-condition fixes the input
value to some arbitrary constant x that satisfies a predicate
P , and where the post-condition requires that the result is
equal to f(x). Then, because S is loop-free, it is clear that
the previous proof goal can be re-expressed in EasyCrypt
as follows:

∀x, {arg = x ∧ P (x)} skip {f2(x) = f1(x)}

where the function f2 is constructed automatically by the
weakest precondition calculus in EasyCrypt. It therefore
follows that, for such programs, goals of the form given
in Equation 2 can always be transformed into goals of the
form given in Equation 1.

For example, suppose that we want to prove that the pro-
cedure xor left proc in Figure 5 satisfies the following Hoare
triple, where w is a logical variable quantified universally:
hoare [ M.xor left proc : w = w1 ⇛ res = xor left w].

Then one can use the following tactic
bdep 8 8 [w] [w1] [w1] xor left spec predT W8.

where EasyCrypt is asked to prove that, when seen as a
circuit, the procedure code is equivalent to the circuit cor-
responding to the operator xor left spec. Here, both circuits
are defined as having inputs (w1) and outputs (again w1) bit-
vectors of size 8, and equivalence must hold for all inputs
(predT W8 is the predicate that accepts all bit-strings of size
8). Then, EasyCrypt automatically generates the circuits and,
after checking circuit equivalence, asks the user to prove the
following two implications:
w = w1{hr} ⇒ predT W8 (W8.bits2w (w2bits w)) ∧ w = w1{hr}

∀ (w1 0 : W8.t),
xor left (W8.bits2w (w2bits w)) = W8.bits2w (w2bits w1 0)
⇒ w1 0 = xor left w

The first implication requires the user to show that the
Hoare triple pre-condition implies the circuit-equivalence
precondition (which in this case is trivial). The second
implication requires the user to show that the equivalence
shown at the circuit level implies the post-condition of the
Hoare triple. Again, in this case the implication is trivial
but, in general, the circuit-based equivalence is referring to
a circuit that operates over the combined bit-string of all
program inputs (in this case there is only one) and produces
a bit string that is interpreted as the concatenation of all
program outputs (again here there is only one).

Intuitively, every application of the bdep tactic over
(relational) Hoare triples, can be seen as an application of
the consequence rule, where the user is asked to prove that
a Hoare triple automatically proved using the circuit-based
backend implies the Hoare triple that the user wants to
discharge. I.e., when proving {P}C {Q} using bdep, if the
tactic is successful it returns {P ′}C {Q′} as a proved result,
where P ′ and C ′ refer to the bit string representation of the
program state and depend on the analysis that was carried
out at the circuit level. It remains to prove in EasyCrypt
that P ⇒ P ′ and Q′ ⇒ Q. These two implications are
usually straightforward to discharge, and much simpler to
prove than the original proof goal.

Program equivalence. Finally, by the same reasoning, we
can justify discharging relational Hoare triples of the form:

∀x,
{

arg1 = arg2 ∧
arg1 = x ∧ P (x)

}
S1 ∼ S2

{
res1 = res2

}
(3)

Indeed, the EasyCrypt weakest precondition calculus can
infer f1 and f2 corresponding to S1 and S2 and reduce both
programs to skip, so that the relational Hoare triple can be
restated as an implication.

For example, suppose that we want to prove that
the procedure xor left proc is equivalent to the procedure
xor right proc in Figure 5, i.e., that the following relational
Hoare triple holds:

equiv [ M.xor left proc ∼ M.xor right proc :
w = arg{1} ∧ arg{1} = arg{2}⇛ res{1} = res{2} ].

Then one can use the following tactic

bdepeq 8 [w1] [w1] {8 : [w1 ∼ w1]} predT W8.

where EasyCrypt is asked to prove that, when seen as cir-
cuits, the code of both procedures is equivalent. Again, both
circuits are defined as having inputs (w1) and outputs (again
w1) bit-vectors of size 8, and equivalence must hold for all
inputs (predT W8 is the predicate that accepts all bit-strings
of size 8). Then, EasyCrypt automatically generates the
circuits and, after checking circuit equivalence, asks the user
to prove two natural implications: 1) that the precondition
implies that inputs on both sides are initially the same and
predT W8 holds initially; and 2) that equality of the circuit
outputs implies the relational postcondition.



Proving circuit equivalence. In theory, the framework
above works for any decision procedure for circuit equiva-
lence. In some of our examples, this follows directly from
structural equivalence, i.e., it can be checked simply by com-
paring the representation of the circuit, which can be done
with essentially no cost (cf. Section 6). When the circuits
have a different structure, we carry out equivalence checking
at the logical level by calling an external SAT solver (in
the future we aim to experiment with various equivalence
checking backends). Finally, in some cases that we will
explain in the next section, the trivial approach of proving
equivalence by exhaustive evaluation works best. Indeed,
circuit equivalence checking does not always work satisfac-
torily when applied naively to the examples we address in
this work. This happens when the the specification and/or
the computation are not easily expressible as a reasonably-
sized circuit. In the next section we describe our approaches
to dealing with this problem.

5. Scaling by Using Hybrid Reasoning

In this section, we introduce a hybrid approach that
addresses these scalability issues. Our approach, which inte-
grates deductive verification, also overcomes the limitations
of a purely deductive approach to functional correctness,
which also doesn’t scale well, as was reported in prior
work [11].

Dependency analysis for exhaustive evaluation. While
blunt, the exhaustive evaluation approach can be refined so
that it can be used in a sound and scalable way to address a
common pattern that occurs in post-quantum cryptography:
serialization functions that compress algebraic structure rep-
resentations into byte arrays.

At a high-level, these serialization functions are comput-
ing a map: the algebraic representation can be seen as a list
of fixed size (order 1K is typical) of finite-field elements.
Each field element is compressed/decompressed using the
same algorithm to/from a small number of bits (e.g., 1, 4, 10
and 12 bits are values that occur in ML-KEM 768). Proving
such functions deductively requires extensive boiler-plate
code because of the bit-level semantics, particularly in the
case of SIMD implementations that totally obfuscate the
logical structure of the algorithm. As an example, consider
the EasyCrypt specification of compressing an integer rep-
resenting an element in Fq by rounding it to another integer
that fits into d bits.

op compress(c : int) : int = (c % q * 2d + (q / 2)) / q % 2d.

This is a very high-level specification that can be evaluated
as an EasyCrypt operator—EasyCrypt supports evaluation
of int expressions—but for which there is no obvious circuit
representation, as it is expressed over native EasyCrypt
integers. Indeed, in previous proofs of ML-KEM in Easy-
crypt [11], [12], showing that compression is correctly im-
plemented by a sequence of processor instructions required
architecture-specific reasoning, as different sequences of
processor instructions are used for different compression

sizes. This pattern occurs also in other variants of ML-KEM
not covered by the proofs in [11], [12], and it occurs as well
in implementations of ML-DSA.

The new circuit-based reasoning backend in EasyCrypt
permits proving such functions with a fraction of the effort,
relying almost entirely on automation. Our approach is as
follows. We introduce a circuit-based dependency analysis
mechanism that, given a circuit, infers for each output bit
the input bits on which it depends. Based on this, the user is
offered a variant of the bdep tactic that takes as inputs: 1) the
EasyCrypt program; 2) the number of parallel lanes in which
the computation is logically structured; 3) the specification
of the computation done by one lane; and 4) the range of
inputs over which the equivalence must hold. The EasyCrypt
tactic then tries to discharge the goal as follows:
1) It converts the program into a circuit;
2) It runs the dependency analysis to confirm that the

full circuit decomposes into a parallel computation as
claimed by the user;

3) It extracts the circuits for each of the parallel lanes;
4) It runs pairwise equivalence checks between lanes to

ensure that they all compute the same function; and
5) It checks that the first lane is equivalent to the spec by

exhaustive evaluation for all possible inputs of such lane.
We note that step 4 above is usually trivial because the
circuits for all the lanes are identical: in fact, in this case
the circuit representation we use permits recognising this
at essentially zero cost [16]. We also note that step 5)
can be replaced by any equivalence checking procedure
and, in particular, if the lane function specification can be
converted to a circuit, then it can also be discharged by
circuit equivalence. Indeed, EasyCrypt offers a variant of the
bdep tactic that works in this way, so the user can choose
which decision procedure to use.

Clearly, this simple strategy can be used to discharge ex-
tensional equivalence goals of the form given by Equation 1,
when f1 and f2 are map computations. More precisely, the
bdep tactic as described above can be used to discharge the
functional correctness of the compression algorithm via a
judgement of the form:

∀x, ∀i ∈ [0 : n], P ([chunk(16, x)]i) ⇒
chunk(10, f2(x)) = map g (chunk(16, x))

where g denotes the lane function, n denotes the number of
lanes, P denotes the precondition that must hold on every
lane input, and chunk(k, x) breaks down x into sub-bit-
vectors of size k (we require that k divides the size of x).

To further illustrate this kind of reasoning, let us revisit
the example in Figure 5 and the following Hoare triple:
hoare [ M.xor left proc : w = w1 ⇛ res = xor left w].

An alternative way to discharge this goal is to observe that
213u8⊕ 42u8 = 255u8, and use the bdep tactic as follows
to leverage the fact that XOR is computed in parallel lanes
of width 1:
op xor1 bool (b: bool) = b ˆˆ true.

bdep 1 1 [w] [w1] [w1] xor1 bool predT bool.



This will cause EasyCrypt to check that, indeed, the program
circuit decomposes into 8 lanes of width 1, and that each
of them computes the circuit xor1 bool. As side conditions
the user is again asked to prove that the trivial pre-condition
holds (in this case for all of the 8 lanes), and that the estab-
lished circuit-based post-condition implies that the program
is indeed computing xor left. This latter implication takes the
following form:

∀ (w1 0 : W8.t),
map xor1 bool (map bits2bool (chunk 1 (w2bits w))) =

map bits2bool (chunk 1 (w2bits w1 0))⇒ w1 0 = xor left w

Observe that, albeit straightforward to prove in EasyCrypt,
this implication is no longer trivial and, indeed, there is
a tradeoff: while lane-wise equivalence permits scaling the
circuit-based analysis, using it may require massaging the
proof goal in order to establish that, indeed, the computation
one is performing is structured as a map.

We will showcase and evaluate the benefits of the various
forms of the bdep tactic in Section 7. For now, we will
look at yet another variant of the tactic that also leverages
dependency analysis, but for relational goals.

Dependency analysis in relational goals. Relational Hoare
logic is a powerful tool. Judgments in this logic can be used
to propagate a functional correctness result from a program
S1 to a program S2 by transitivity. I.e., if we know that S1

satisfies Hoare triple {P}S1 {Q} and that S1 and S2 satisfy
the relational contract {arg1 = arg2}S1 ∼ S2 {res1 =
res2}, then the EasyCrypt logic allows us to derive that
{P}S2 {Q} holds. We note that if the effort required to
carry out the relational step is small, then this permits
amortizing the effort involved in proving the first imple-
mentation functionally correct. Unfortunately, although the
relational Hoare logics of EasyCrypt permits proving these
transitivity goals interactively, they were designed for game-
hopping security proofs where the control-flow structure and
operations used by both programs are very close.

In functional correctness proofs, however, it is often
the case that reference and optimized programs are not
easy to analyse in lockstep. For example, when using
SIMD operations, or when optimizing programs for different
memory usages, the control flow and instruction sets used
by the programs can be quite different. In prior proof of
MLKEM [11], [12], for example, the strategy of using
transitivity and relational Hoare logic to derive a proof
for an AVX2 implementation from an existing proof for
a reference implementation was not effective. Indeed, for
many cases, including the serialization functions discussed
above, it was easier to prove independently that the AVX2
functions satisfied a high-level functional specification.

However, as seen above, when using a circuit rep-
resentation, it is often possible to recognize a common
logical structure in both programs. Indeed, if S1 and S2

are performing parallel computations across n lanes with
different instruction sets, and using different control-flow
or scheduling, the parallel structure can be recognized with
dependency analysis on each side. Moreover, the circuits

that are being computed by each lane can be easily extracted.
Then, equivalence can be proved lane by lane.

Another variant of the bdep tactic in EasyCrypt (already
briefly showcased above) permits discharging relational
goals using precisely this strategy. For example, referring
back to Figure 5, one could revisit the relational goal:

equiv [ M.xor left proc ∼ M.xor right proc :
w = arg{1} ∧ arg{1} = arg{2}⇛ res{1} = res{2} ].

Then, one can use the bdepeq tactic differently as follows:

bdepeq 1 [w1] [w1] {1 : [w1 ∼ w1]} predT bool.

From the user perspective, this tactic produces exactly the
same outcome as if one asked equivalence to be checked
over the whole circuit. Indeed, the user is not even asked to
specify what the lane functions are doing, or even if they
are all doing the same thing. The only requirement is that
both circuits decompose into lanes of size 1, and that such
per-lane equivalence holds.

Other variants of the bdep tactic can be added in a
straightforward way, for example to establish the relational
goal simultaneously with the functional correctness goal
on one of the sides.6 The high-level EasyCrypt logics are
expressive enough to capture and reason compositionally
about judgements of the form:

∀x,

 arg1 = arg2
∧

arg1 = x

 S1 ∼ S2

 res1 = res2
∧

res1 = f(x)


We have used the approach we just described to construct
a new (shorter) proof for the Jasmin reference implemen-
tation [11], [12] of the compression function in ML-KEM,
while at the same time proving it equivalent to a faster AVX2
version developed specifically for this work. Moreover, we
used the transitivity approach to derive functional correct-
ness results for ARM-m4 (a 32-bit architecture) code from
x64-64 implementations. We say more on these results in
Section 7.

We conclude this section with an example of how de-
ductive reasoning and high-level EasyCrypt tactics can be
used in combination with circuit-based reasoning to tackle
challenging proof goals that were previously out of reach.

Scaling by modular deductive reasoning. Let us return
to the motivating example we presented in Section 2. We
hope the reader will agree that, looking at Figure 1, it is
not straightforward to see how the circuit-based reasoning
tactics we presented above can be used prove functional
correctness: the program does not seem to carry out parallel
computation and, indeed, the program and the specification
both give rise to large and complex-structured circuits.

6. Future work in EasyCrypt will certainly broaden the range of tactics
relying on the circuit-based machinery and dependency analysis in partic-
ular. For example, dealing with container initialization patterns, where the
same function is being computed on each lane, but with a lane-dependent
behavior can be handled by combining dependency analysis and circuit
decomposition with constant propagation of the lane index.



However, our approach consists of using the EasyCrypt
high-level logics to break the problem into smaller parts
that can, in fact, be proved using circuit-based analysis. We
showed this in diagram form in Figure 3. The first step is
to use the sequence rule of Hoare logic to break the proof
goal into five parts: 1) reading 48x8 bits from stack into two
256-bit registers; 2) rearranging the input into 32 candidates,
arranged as 2 sets of sixteen 16-bit words 3) computing
the 2x16-bit mask that encodes the accepted and rejected
candidates 4) move the accepted candidates into consecutive
lefmost positions of SIMD registers, using the above bit
masks and memory tables that define the necessary per-
mutations 5) computing the number of accepted candidates
and offsets for storage, and completing the computation by
writing the results to the output buffer.

After this split is done, the Hoare triples that correspond
to steps 1) and 5) are discharged interactively, since their
logic is naturally expressed in the semantics of Jasmin
formalized in EasyCrypt. For example, proving correct com-
putation of the number of accepted candidates in goal 5) is
straightforward because the semantics of the #POPCNT 64
instruction is exactly defined as counting the number of 1
bits in the input, when it is seen as a list of bits. Then, the
remaining steps can all be seen as different instances of the
circuit-based reasoning illustrated above, as follows:

• step 2) can be seen as a parallel computation that is
repeated four times, as described in Figure 2. This cor-
responds to the top level of circuitry in Figure 3. More-
over, the specification for this computation is naturally
expressed as chunking the input into 12-bit words and
chunking the output into 16-bit words, which we have
seen above to be the natural language of circuit-based
reasoning. Furthermore, the specification of the map com-
putation being done for each of the output chunks is
simply the padding with 4 zero bits of the corresponding
input chunk;

• in step 3), which corresponds to the intermediate circuits
in Figure 3, the computation of the masks can again
be easily seen as a parallel computation of the Boolean
predicate that checks whether a candidate is in the ac-
ceptable range. So, in this case, the parallel computation
is mapping 12-bits to 1-bit on each lane;

• finally, step 4) is the most complex of all because the pro-
gram is actually using input-dependent indices to access
memory tables that define which permutation should be
computed to put the accepted candidates in their correct
place. Working with a circuit representation of these table
accesses would not be feasible. However, we can leverage
in the proof the same intuition that makes the SIMD
implementation work: the table of possible permutations
has only 256 entries, a small number. This means that we
can use the high-level reasoning of easycrypt to restate
step 4) as 256x4 Hoare triples, each corresponding to one
possible index to the permutation table. Furthermore, for
each of these goals, the table access can be removed by
constant propagation and the computation expressed as a
small circuit that computes the permutation. From here,

circuit-based reasoning takes over and permits discharging
the proof goals automatically. This circuit-based reasoning
is illustrated at the bottom of Figure 3. We call this proof
strategy exhaustive partial evaluation.

To the best of our knowledge, the above proof strategy
is novel in that it crucially relies on hybrid reasoning in
different computation models and logical frameworks to
remove a major hurdle in the proof of functional correctness
of optimized ML-KEM. Furthermore, it can also be used
in other settings where rejection sampling is used, namely
ML-DSA. We note, however, that although the above de-
scription may now seem intuitive, finding the best approach
to formalizing the details was non-trivial, and it required
several enhancements to the EasyCrypt front-end to allow
expressing it in a reasonably compact way. We defer more
details to Section 7 and describe the tool development work
carried out in EasyCrypt next.

6. Implementation of New EasyCrypt Features

To support circuit-based reasoning in EasyCrypt, we
developed a new OCaml module which introduces func-
tionalities for constructing and manipulating circuits. This
extension is designed to integrate incrementally with the
existing EasyCrypt codebase, with a focus on modularity
and reuse of existing infrastructure.

Circuit manipulation is implemented in a dedicated li-
brary based on And-Inverted Graphs (AIG), a widely used
representation in equivalence checking (e.g., in tools like
ABC [17]). AIG circuits provide a simple yet expressive
foundation for dependency analysis and functional equiva-
lence checking [18].

On top of this AIG-based representation, we construct
standard ALU circuits for arithmetic and logical operations,
following the semantics defined by the SMT-LIB QFABV
theory [19]. These ALU circuits can be translated into AIG
circuits (for dependency analysis and equivalence checking)
or directly into SMT-LIB formulas.

The circuits module is integrated into EasyCrypt’s rea-
soning framework by adding the ability to translate Easy-
Crypt formulas (representing loop-free computations) into
circuits. This translation process traverses expressions re-
cursively, replacing operations with corresponding gadgets
(as mentioned in Section 4) and composing subcircuits
accordingly. The composition process abstracts over the raw
AIG structure while preserving type information to connect
the AIG representation with the high-level reasoning used
in EasyCrypt tactics.

Using this infrastructure, we implemented the new fam-
ily of bdep tactics for circuit-based dependency analysis and
equivalence checking. These tactics analyze dependencies
by traversing a circuit’s outputs and determining the input
bits that affect each output. This allows checking whether
a circuit decomposes into independent lanes, as claimed by
the tactic user. Lane equivalence within the same program is
typically checked via structural equality of their functional
representations. For more complex equivalence proofs, we



employ a SMT solver, formulating the problem as checking
whether a solution exists for the predicate

P (x) ∧ (C1(x) ̸= C2(x))

where C1 and C2 are the circuits to be compared under a
precondition P . An unsatisfiability (UNSAT) result confirms
equivalence.

To facilitate reasoning about programs before their cir-
cuit translation, we extended EasyCrypt with new high-level
program transformation tactics, including proc change and
proc rewrite. These allow replacing program fragments with
equivalent implementations, ensuring that all operations map
to defined circuit gadgets. Improvements in loop unrolling
and constant propagation further streamline program trans-
formations, effectively eliminating integer variables in cir-
cuits.

Trusted Code-Base (TCB). Our design ensures a minimal
and well-defined impact on the existing EasyCrypt Trusted
Code Base (TCB). The original TCB includes: the core
higher-order logic kernel, the core program logic kernel, the
translation to SMT solvers, and the solvers themselves (via
the Why3 framework). All proof tactics in EasyCrypt pro-
duce proof witnesses, and the checking of these witnesses
reduces to the components listed above.

To support circuit reasoning, we extend the TCB with
the OCaml library that implements AIG-based circuit repre-
sentations, dependency analysis, and functional equivalence
checking. The semantics and correctness of the ALU circuits
we define—–following the QFABV SMT-LIB theory—–
are also explicitly included in the TCB. Furthermore, their
translation to SMT-LIB is trusted due to its straightforward,
one-to-one mapping with SMT operators.

This extension does not alter the core logic or proof sys-
tem of EasyCrypt. The use of SMT solvers for equivalence
checking aligns with longstanding EasyCrypt practice and
does not expand the TCB beyond its historical scope.

As described in Section 4, a key design choice is the
ability for users to bind EasyCrypt bitstring operators to
circuits. We conclude this section with a short recap of the
impact of these user-driven bindings on the TCB.

Bindings established using bind op via the QFABV cir-
cuit semantics do not extend the TCB because they require
correctness proofs, making them verifiable extensions. As
such, users can define increasingly complex circuits that
are still subject to EasyCrypt’s proof discipline and au-
tomated checking infrastructure. Bindings established us-
ing bind circuit and the domain-specific circuit description
language do extend the TCB: the user is adding the as-
sumption that the semantics of the EasyCrypt operator and
provided circuit match. While this currently overlaps with
EasyCrypt’s existing constructs, our long-term goal is to
unify this mechanism with EasyCrypt and Jasmin’s ISA
semantics. Such consolidation will further reduce the TCB
by removing redundant semantic representations.

Finally, because our extension is modular and optional, it
does not impact EasyCrypt developments that do not involve
circuits. All new functionalities act as an API layer that

automates proof obligations, but they do not introduce any
unverified components into the trusted core.

7. Use Cases and Experimental Evaluation

We now present the results we obtained with the new
proof automation features introduced in EasyCrypt. We
focus on ML-KEM because this allows us to establish a
direct comparison to a previously existing formally verified
open-source implementation [11], [12] which will serve as
baseline. All examples in this section are included in the
artifact that accompanies the submission.

7.1. Fast AVX2 rejection sampling in ML-KEM

In Sections 2 and 5 we already gave an overview of
our proof strategy for our motivating example: the filtering
routine used in the AVX2 implementations of ML-KEM.
Figure 6 shows highlights of the proof script, which relies
on hybrid reasoning in and where the steps in the proof map
to those described in Section 5.

The seq ˆ⟨pattern⟩ tactic allows breaking the program
at the first occurrence of ⟨pattern⟩ using the sequence rule
for Hoare logic and decompose the proof goal into two
Hoare triples by providing a bridging post/pre-condition as
argument. One can clearly see for step 2) the use of bdep to
recover the map from 12-bit chunks to 16-bit chunks, which
is a trivial extension by adding zero bits, but carried out by
a complex sequence of SIMD instructions in the code. For
step 3) the same tactic is used to prove that every individual
bit in good holds the result of comparing a candidate to
the threshold. In both cases the computations are seen as
a maps and proved correct using dependency analysis and
circuit equivalence. Finally, for step 4), we show how in
the middle of the proof, one can define a specification P
for the computation that will be partially evaluated inside
the bdep tactic for each value of input g, thereby yielding a
fixed permutation that can be used as target for equivalence
with the code precisely on the same value of g. We recall
that in this case the code is performing a table access based
on this value to fix the argument of a SIMD permutation
operation, which is again resolved by constant propagation
before converting the program to a circuit. Overall, the proof
comprises 350 lines of code, where the most verbose parts
correspond to the deductive reasoning that justifies writing
to the output array in overlapped regions.

7.2. Faster compression in ML-KEM

We have introduced the notion of compression of a finite
field element in Section 5. We return to that example to
illustrate what circuit-based reasoning buys for proof repair
when formally verified code is modified. The functional
correctness proofs of ML-KEM for Jasmin code reported
in [11], [12] were written in a purely deductive way and
required deep algebraic reasoning about the following three
steps: 1) a (floor) Barrett reduction step that takes a represen-
tation of a finite field element in the range [−215, 215−1], i.e.



(* Step 2: extracting all the 12−bit words from the input buffer *)
seqˆg0←{2} & −1 : (∀ i, 0 ≤ i < 32⇒

extract 512 16 (concat 2u256 f0 f1) (16 * i)
= zextend 12 16 (sliceget 8 12 56 buf (12 * i))).

− bdep 12 16 [ buf] [buf] [f0; f1] zextend 12 16 predT W12.

(* Step 3: parallel comparison, computing good *)
seqˆgood← : (#pre ∧
∀ i, 0 ≤ i < 32⇒ good[perm i]⇔

extract 512 16 (concat 2u256 f0 f1) (16 * i) <s 3329).
− bdep 16 1 [ f0; f1] [f0; f1] [good] ltq predT W16 perm.

(* Step 4: Exhaustive partial evaluation and permutation *)
pose P (o : int) (g : W8.t) (f : W256.t) (f 0 : W128.t)←
let w = pmap (fun i⇒ if g[i]

then Some (extract 256 16 f (o + 16 * i))
else None) (iota 0 8) in

all (fun i⇒ w[i] = extract 128 16 f 0 (16 * i)) (iota 0 (size w)).

seqˆf0 0← : (#pre ∧ P 0 good0 0 f0 f0 0).
− bdep bitstring [f0] [P 0 good0 0 f0 f0 0] good0 0.
seqˆf0 1← : (#pre ∧ P 128 good0 1 f0 f0 1).
− bdep bitstring [f0] [P 128 good0 1 f0 f0 1] good0 1.
seqˆf1 0← : (#pre ∧ P 0 good1 0 f1 f1 0).
− bdep bitstring [f1] [P 0 good1 0 f1 f1 0] good1 0.
sp 1; seqˆf1 1← : (#pre ∧ P 128 good1 1 f1 f1 1).
− bdep bitstring [f1] [P 128 good1 1 f1 f1 1] good1 1.

Figure 6. Highlights of the proof script for the filtering routine.

the full signed range of 16-bit words, to the range [0, q]; 2)
a conditional subtraction step that further reduces the range
to [0, q); and a compressing step that computes rounding to
d = 10-bits as specified by ML-KEM.

In this paper we consider an alternative, more efficient,
version of this serialization process, which we now explain.7

More on compression. The standard techinique to compute⌊
a2d

/
q
⌉

is to apply Barrett reduction to a2d: one chooses
a precision R = 2k and computes

⌊
a ⌊R/q⌉

/
(R/2d)

⌉
. As

long as |a| is smaller than a certain value B depending
on d,R, and q, we have

⌊
a2d

/
q
⌉

=
⌊
a ⌊R/q⌉

/
(R/2d)

⌉
,

where the latter expression is straightforward to implement
using processor instructions. However, small differences in
the value B can make a big difference when it comes to
implementing the algorithm in a given instruction set.

We illustrate this by considering a signed variant
of the compression procedure. We first observe that⌊
(a+ lq) 2d

/
q
⌉
mod 2d =

⌊
a2d

/
q
⌉
mod 2d for an arbi-

trary integer l. This implies we can work with the signed
integers in the range

[
− q−1

2 , q−1
2

]
instead of the unsigned

ones in the range [0, q), halving the requirement of B. The
first modification of our compression procedure is therefore
to replace the floor version of Barrett reduction with the
rounding one, mapping elements to

[
− q−1

2 , q−1
2

]
.

In theory, invoking [20, Proposition 1], |a| < R
2d(q−1)

suffices for concluding
⌊
a2d

/
q
⌉
=

⌊
a ⌊R/q⌉

/
(R/2d)

⌉
. Un-

fortunately, this analytical approach does not permit to easily
justify the efficient implementation we seek in AVX2. In-

7. The unverified AVX2 implementation in the pq-crystals/kyber repos-
itory deploys an alternative optimization that also does not require a
conditional subtraction.

1 inline fn compress10_16x16_inline(
2 reg u256 a b0 b1 b2 mask) → reg u256 {
3 reg u256 p0 p1;
4 p0 = #VPMULH_16u16(a, b0);
5 p1 = #VPMULL_16u16(a, b1);
6 p0 = #VPADD_16u16(p0, p1);
7 p0 = #VPMULHRS_16u16(p0, b2);
8 p0 = #VPAND_256(p0, mask);
9 return p0;

10 }

Figure 7. Improved Compress10. Inlined 768/16 times round 768 values
in [−(q − 1)/2, (q − 1)/2].

deed, for d = 10, as log2
(
|a| · 2d(q − 1)

)
> 32 for some

a ∈
[
− q−1

2 , q−1
2

]
, we require R ≥ 233.

A common way that practitioners use for sharpening
the precision R is brute-force testing: one simply tests if
for all a from a given range, the identity

⌊
a2d

/
q
⌉

=⌊
a ⌊R/q⌉

/
(R/2d)

⌉
holds. For the case d = 10, experiments

show that R = 232 is the minimum power of two satisfying⌊
a210

/
q
⌉
=

⌊
a
⌊
232

/
q
⌉/

222
⌉

for all a ∈
[
− q−1

2 , q−1
2

]
. The

algorithm that is justified in this way is given in Figure 7. We
stress that, since the algorithm is finetuned by practitioners
using this approach, there is no immediately available proof
that can be formalized. Furthermore, formalizing such a
proof would probably incur in an effort comparable to the
proof constructed for the previous version of the algorithm,
which used a different tuning.

Amortizing proof effort. Interestingly, using our circuit-
based approach we are able to amortize the effort of proving
the reference implementation of this algorithm and obtain a
proof for the new one with minimal effort. Using the proof
of the AVX2 implementation in [11] as a baseline (noting
that it could be rewritten using circuit-based reasoning as
well) one goes from a proof taking 650 lines of code to one
taking 100 lines of code. The proof goes as follows. We first
observe that, when proving the reference implementation
of the compression routines, prior work established that
the following EasyCrypt specification is equivalent to the
mathematical specification of the rounding procedure.

op reduce(c : W16.t) : W16.t =
let t = (sigextu32 c) * (W32.of int 20159) in
let t = (sra 32 t (W32.of int 26)) in
let t = (t * (W32.of int 3329)) in
let r = c − (W2u16.truncateu16 t) in r.

op csubq(c : W16.t) : W16.t =
if (c < (W16.of int 3329)) then c else (c − (W16.of int 3329)).

op compress10(x : W16.t) : W10.t =
truncate10
(((((zeroextu64 x) `<<` (W64.of int 10)) + W64.of int 1665) *

(W64.of int 1290167)) `>>` (W64.of int 32)).

op lane func compress10 = compress10 \o csubq \o reduce.

Here, sigextu32 sign-extends a 16-bit word to 32-bits, sra 32
represents the arithmetic right shift of a 32-bit word, and
truncateu16 truncates a 16-bit word to 16-bits.



Crucially, the above spec given by prior work for the
computation performed for each coefficient can be converted
to a circuit by the new EasyCrypt machinery. This means
that proving the new version of the AVX2 compression
algorithm only requires massaging the program to allow
conversion to a circuit (unrolling loops, using appropriate
bindings, etc.) and calling the bdep tactic as
bdep 16 10 lane func compress10 pcond true

EasyCrypt then automatically recognizes the map structure
of the function across all 768 coefficients, confirms that all
lanes are equivalent, and finally checks that the first lane
is equivalent to the specification circuit. Note that here we
delegate the goal to a SAT solver, which is able to discharge
the latter goal even though the two circuits are nothing alike.

We ran experiments comparing this lane-oriented anal-
ysis with direct SAT translation of the full circuit. As
expected, for smaller computations such as the initial Barrett
reduction step, the difference is noticeable in the timings
but both approaches offer reasonable performance levels.
However, as the circuit size grows, a direct translation to
SAT is not feasible. For example, the full sequence of
operations required for compress takes 30s in a very modest
machine, whereas a blunt SAT based approach does not
produce a result in reasonable time.

7.3. Faster verified code

We now discuss the performance of our AVX2-
optimized implementation of ML-KEM. We compare our
new optimized implementation with the previous Jasmin
implementation [12], the official AVX2 optimized imple-
mentation released by the Kyber team and available from
the pq-crystals repository, and the formally verified im-
plementation available in libcrux. We obtained the code
from pq-crystals8 from the project’s GitHub and only did
one modification to the corresponding Makefile: we added
the option -no-avx512f to avoid the compiler introducing
AVX-512 instructions (which happens when the target CPU
supports those instructions) and use the shared libraries
produced by the corresponding Makefiles. We performed
this change because our focus is AVX2 implementations.

For libcrux, we consulted the project’s GitHub and chose
the C AVX2 implementation.9 We notice that the authors of
this project provide ready-to-use C implementations along-
side the Rust implementations, which are formally verified.
Given the nature of our analysis, focused on C and assembly
code, we found the C implementations suitable for this
analysis. To build the library, we configured the build as
Release, as recommended by the authors in the available
documentation. We wrote a wrapper that copies into and
from the structures of libcrux, but we do not include this
overhead in the benchmark results.

The benchmarking procedure is as follows. The Intel
CPUs are 8700K, 11700K, and 13900K, all with Hyper-
Threading and TurboBoost disabled, operating at the base

8. Link to pq-crystals github.
9. Link to libcrux github.

frequency. The compiler used to build the benchmarking
binaries, pq-crystals, and libcrux was Clang 18.1.8. Each
experiment comprises 10000 valid runs of each algorithm.
We focus on the derandomized versions, so randomness
sampling does not affect the results. We start by generating
10000 keypair seeds, and then, using the seeds, we generate
10000 keypairs and measure the number of CPU cycles
for each execution. We keep the median and follow by
generating 10000 ciphertexts / shared secrets (using all
10000 different keypairs) and also keep the median. We do
the same for the decapsulation. We repeat this experiment
11 times (to avoid outliers) and report the median of those
in this paper. As a final note, all pointers, namely, all inputs
and outputs of the evaluated functions, are aligned to 64
bytes to reduce benchmarking noise.

CPU Implementation keypair enc dec

8700K [12] 94099 94569 97715
This Paper 40134 40599 43437
pq-crystals 39722 39761 46161
libcrux 58231 62588 66385

11700K [12] 80150 79942 82242
This Paper 37458 37798 39970
pq-crystals 36958 38082 42566
libcrux 55302 56858 61840

13900K [12] 67514 67384 77760
This Paper 34732 35212 43784
pq-crystals 31448 32090 36064
libcrux 52774 53502 56798

Table 1. CPU CYCLES OF AVX2 IMPLEMENTATIONS.

Table 1 presents our benchmarking results according
to the methodology described above. All implementations
from this table correspond to the derandomized versions. In
comparison with [12], the previously fastest Jasmin formally
verified implementation, we were able to improve perfor-
mance up to 2.3x on older CPUs, such as the shown Intel
8700K (Coffee Lake), and on more recent ones, such as
the Intel 13900K (Raptor Lake) and Intel 11700K (Rocket
Lake), between 1.7x and 2.1x.

It is worth noting that the proposed implementation in
this paper includes protections against Spectre v1 while
the others on the table do not. Spectre v1 has an impact
on performance: for instance, on the 11700K, this paper’s
implementation without Spectre v1 protections is slightly
faster, taking 36818, 37200, and 39376 CPU cycles instead
of the reported values of 37458, 37798, and 39970. The
difference is similar in other CPUs.

Our code compares quite well with the C/asm AVX2
imlementation from pq-crystals: the decapsulation is faster
on 8700K and 11700K, comparable for the remaining func-
tions in these CPUs, and somewhat comparable on the
13900K. We expect that the approach and tools defined in
this paper can be used to improve performance in specific
micro-architectures without significant human effort to fix
the proofs of rearranged versions that take advantage, for
instance, of different CPU instruction latencies. At this
stage, it is also important to highlight that this paper’s
implementation has the advantage that one does not need to

https://github.com/pq-crystals/kyber/tree/10b478fc3cc4ff6215eb0b6a11bd758bf0929cbd
https://github.com/cryspen/libcrux/tree/d4b585d9ac178dfd722fd7018cd6487b664edeaa/libcrux-ml-kem/c


rely on Clang or other compilers not breaking the constant-
time property.

Regarding the libcrux implementation, it offers interest-
ing performance, considering that it is proven functionally
correct at the source level (the C compiler is in the TCB). We
note that the chosen implementation is recent and updated
frequently, so we expect its performance to improve wrt
what we report here. Nevertheless, we expect our code to
remain competitive in the analyzed contexts and to provide
a formally verified alternative for the analyzed scenarios.

7.4. Easier proofs of vectorized Keccak

To further illustrate the benefits of the paradigm shift
we propose, we revisited the correctness proof of the Jas-
min re-implementation of openssl’s AVX2 implementation,
originally presented in [13]. This example exhibits some
peculiarities shared by other notable examples of high-speed
vectorized implementations, such as a permuted (redundant)
state representation benefiting from the available AVX2
instructions and the blurring of the structure of the algorithm
into large chunks of straight-line code.

We use as baseline the original proof from [13], which
is purely deductive and is spread between 3 files totaling
∼3.5K lines of EasyCrypt code. It must be stressed that
this total includes a reusable library (∼750 lines), and that
a large percentage of it is based on exhibiting explicit code
transformations needed to unlock the equivalence proof. We
use circuit-based reasoning to tackle the most challenging
part of the proof: the correctness of the round function. The
statement reads as follows:

M. keccakf1600 pround avx2 :
state = a ∧ stavx2INV a ⇛ res = stavx2 keccak pround a.

where stavx2INV is a predicate that characterizes the storage
of the Keccak state, and stavx2 keccak pround is a circuit-
friendly version of the round function without the ι−step.
The proof is trivial with the newly developed bdep tactic,
since it amounts to the equivalence of two circuits (6 lines of
proof script running on a couple of seconds). The correct-
ness of the full permutation function follows immediately
from standard Hoare reasoning. The whole development has
less than 300 lines of code, where most of them are devoted
to adjusting the existing specification in a circuit-friendly
variant (which would be avoidable if it had been written in
the first place with it in mind).

7.5. Bridging the x86-ARM architecture barrier

We conclude this section with another illustration of
proof effort amortization with the compression example.
Up to now, to the best of our knowledge, there is no fully
formally verified proof of an implementation of ML-KEM in
ARM platforms. During the course of this work, the Jasmin
backend for ARMv7 has matured, and we have developed
an implementation. This code is not yet verified, but it
already allows us to answer an important question: will one

be able to amortize the effort invested in proving the first
implementations [11]?

Since the code we have developed for ARMv7 mimics
the reference implementation very closely in terms of struc-
ture, our goal for future work is to carry out a proof by
pure extensional equality, i.e., we prove that all functions
provide the same outputs when fed with the same inputs.
The relational Hoare logic of EasyCrypt will allow dealing
with high-level functions that just call other functions in a
reasonably straightforward way, but this will not be the case
for low level functions that carry out architecture-specific
computations.

We showcase our use of circuit-based reasoning to prove
that two different ARM implementations of the compression
routines are equivalent to the reference x86-64 implementa-
tion. Indeed, in ARMv7 we have several interesting multipli-
cation instructions, which allow different strategies for com-
pression. Our first implementation mimmics the x86-64 ref-
erence implementation and uses standard unsigned multipli-
cation UMULL. However, the digital signal processing exten-
sion implements SMMULR, which maps two signed 32-bit in-
tegers a and b to

⌊
ab
/
232

⌉
. Choosing R = 242, we obtain our

second implementation of
⌊
a210

/
q
⌉

as
⌊
a
⌊
242

/
q
⌉/

232
⌉
.

See Figures 8 and 9 for the ARM implementations. The
proofs are identical for both implementations. We prove a
relational Hoare triple that states extensional equivalence be-
tween the ARM implementations and the x86-64 reference
implementation. Note that this equivalence relates a program
targeting a 32-bit architecture to a program targeting a 64-
bit architecture with totally different instruction sets. The
proofs massage both implementations such that they can be
converted into circuit form, i.e., unrolling loops and using
the correct bindings, and then call the variant of the bdep
tactic that proves extensional equivalence over the relevant
input range described by a predicate pcond reduced, and with
lane structure of the map computation indicated as follows.
bdepeq 16 [a] [a] {10 : [rp ∼ rp]} pcond reduced.

Note that, in this case, we do not even require the specifi-
cations of the computations carried out by each lane.

8. Related work

One of the most successful applications of formal meth-
ods is arguably hardware verification. Two common goals
of hardware verification are to prove that a circuit correctly
implements a boolean function, or that two boolean circuits
are equal [17]. However, there is also a large body of
work that targets correctness and equivalence of arithmetic
circuits [21]. Our algorithms for converting programs into
circuits and for verifying properties of circuits are largely
similar to pre-existing algorithms. However, our methodol-
ogy and the focus on cryptographic implementations appear
to be new.

There is a large body of work that uses program verifi-
cation for proving correctness of cryptographic code [3]. A
majority of this work, including [22], [23], [24] and prior
work on Jasmin, follows the classic approach of deductive



1 fn compress10(reg ptr u8[
MLKEM_POLYVECCOMPRESSEDBYTES] rp,

2 stack u16[MLKEM_VECN] a) → reg ptr u8[
MLKEM_POLYVECCOMPRESSEDBYTES]

3 {
4 stack u16[MLKEM_VECN] aa;
5 reg u32 c, b, limit, i, j;
6 reg u32[4] t; inline int k;
7
8 i = 0; j = 0;
9 aa = __polyvec_csubq(a);

10 limit = MLKEM_VECN - 3;
11 while (i < limit) {
12 for k = 0 to 4 {
13 t[k] = (32u)aa[(int) i];
14 i += 1;
15 t[k] <<= 10; t[k] += 1665;
16 c = 1290167; c,t[k] = #UMULL(c,t[k]);
17 c = 0x3ff; t[k] &= c; }
18 c = t[0]; c &= 0xff;
19 rp[(int) j] = (8u)c; j += 1;
20 b = t[0]; b >>= 8; c = t[1]; c <<= 2;
21 c |= b; rp[(int) j] = (8u)c; j += 1;
22 b = t[1]; b >>= 6; c = t[2]; c <<= 4;
23 c |= b; rp[(int) j] = (8u)c; j += 1;
24 b = t[2]; b >>= 4; c = t[3]; c <<= 6;
25 c |= b; rp[(int) j] = (8u)c; j += 1;
26 t[3] >>= 2; rp[(int) j] = (8u)t[3];
27 j += 1; }
28 return rp;
29 }

Figure 8. Compress10 in ARM 32-bit architecture (reference).

1 fn compress10x4(reg u32 a0 a1 a2 a3 b)
2 → reg u32, reg u32 {
3 a0=#SMMULR(a0, b); a1=#SMMULR(a1, b);
4 a2=#SMMULR(a2, b); a3=#SMMULR(a3, b);
5 a0=#UBFX(a0, 0, 10); a1=#UBFX(a1, 0, 10);
6 a2=#UBFX(a2, 0, 10); a3=#UBFX(a3, 0, 10);
7 a0|= a1 << 10; a0 |= a2 << 20;
8 a0 |= a3 << 30; a3 >>= 2;
9 return a0, a3;

10 }
11
12 fn compress10(reg ptr u8[960] des, stack u16[

KYBER_VECN] src) →
13 reg ptr u8[960] {
14 reg u32[4] a; reg u32 b; inline int i j;
15 b = #MOV(1321131424 % 65536);
16 b = #MOVT(b, 1321131424 / 65536);
17 for i = 0 to KYBER_VECN / 4 {
18 for j = 0 to 4 {a[j]=(32s)src[4*i+j];}
19 a[0],a[3]=compress10x4(a[0],a[1],a[2],a[3],

b);
20 des.[u32 5 * i] = a[0];
21 des.[u8 5 * i + 4] = (8u)a[3]; }
22 return des;
23 }

Figure 9. Compress10 in ARM 32-bit architecture (alternative).

verification, where most of the reasoning is done over the se-
mantics of the target programming language. Our approach
enriches program interpretation with an alternative low-level
semantics, in order to make the logical structure of compu-
tations explicit. We note that our approach is useful for data
wrangling and cryptographic operations that do not have a
rich algebraic structures, and that other approaches are more
suitable when abstract algebraic reasoning is required. In
particular, we believe that the approach of CryptoLine [25]
can be seen as a hybrid representation that is precisely
geared towards algebraic reasoning. However, because of

this specific goal, it is less suitable for the class of routines
we focus on in this paper. The design of CryptoLine [25]
also features automation over scalability and composition-
ality, so an interesting line for future work is to enable this
kind of hybrid reasoning in EasyCrypt as well.

An alternative is to use equivalence checking directly.
This is for instance the approach followed by Galois with
their Software Analysis Workbench (SAW) [26], which has
been used extensively to prove equivalence between a cryp-
tographic implementation and a representation in the Cryptol
language [27]. However, traditional equivalence checking
suffers scalability issues, as discussed in the body of the
paper, and our hybrid approach can be used to improve them.
There is also a large body of work on software equivalence
checking [28] but these tools are not immediately applicable
to cryptographic implementations.

Another traditional approach is to generate correct pro-
grams from specifications. This is the approach followed by
FIAT Crypto [29]; recently the approach has been extended
with mechanisms to synthesize correct and optimized im-
plementations [30]. This approach is appealing but is not
applicable to the complex implementations that we consider.

9. Conclusion

We introduce a hybrid representation of programs and
an associated verification approach that achieves automa-
tion and robustness, which are key benefits of equivalence
checking, as well as compositionality and generality, which
are key benefits of deductive verification.

The main conceptual insight of the paper is that ex-
posing the high-level logic of the code is key to leverage
mainstream circuit-based automated verification. We show
that exposing the high-level logic of the code:
1) Can be achieved by moving away from the usual CPU

(memory and execution) models and interleaving circuit-
based verification with deductive verification (for com-
positional, incremental/iterative, and scalable reasoning);

2) Allows to verify highly optimized code with reasonable
effort, while keeping the complexity of the circuit-based
reasoning problem instances under control.

Our experiments highlight that our approach yields signif-
icant decreases in (human and computational) verification
effort, and potential for proof reuse (across implementations
for different platforms as well as evolution of concrete im-
plementations). Indeed, our technical contributions support
this conceptual insight and they go beyond the demonstrated
verified code: most notably, we define a set of proof-goal
patterns (corresponding to new EasyCrypt tactics described
in Sections 4 and 5 for automatic circuit-based reason-
ing that we believe will guide future EasyCrypt functional
correctness proofs and may be of independent interest for
other formal verification frameworks. Our immediate goal
is to leverage this approach to verify more high-assurance
cryptographic code, focusing on the recently published NIST
post-quantum standards. In particular, our work in the near
future will focus on upcoming ML-KEM and MSL-DSA



implementations for Armv7 and RISC-V, as they become
available, leveraging cross-architecture verification to amor-
tize the overall proof effort.

Acknowledgements

The research was supported by Deutsche Forschungsge-
meinschaft (DFG, German research Foundation) as part of
the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972 and by
the German Federal Ministry of Education and Research
(BMBF) in the framework of the 6GEM research hub under
grant number 16KISK038.

References

[1] E. W. Smith and D. L. Dill, “Automatic formal verification of
block cipher implementations,” in Formal Methods in Computer-
Aided Design, FMCAD 2008, 2008, A. Cimatti and R. B.
Jones, Eds. IEEE, 2008, pp. 1–7. [Online]. Available: https:
//doi.org/10.1109/FMCAD.2008.ECP.10 1

[2] L. Lai, J. Liu, X. Shi, M. Tsai, B. Wang, and B. Yang, “Automatic
verification of cryptographic block function implementations with
logical equivalence checking,” in Computer Security - ESORICS
2024 - 29th European Symposium on Research in Computer Security,
2024, Proceedings, Part IV, ser. Lecture Notes in Computer Science,
J. Garcı́a-Alfaro, R. Kozik, M. Choras, and S. K. Katsikas, Eds.,
vol. 14985. Springer, 2024, pp. 377–395. [Online]. Available:
https://doi.org/10.1007/978-3-031-70903-6 19 1

[3] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno, “SoK: Computer-aided cryptography,” in 2021
IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2021, pp. 777–795. 1, 16
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